
Digital Object Identifier (DOI) 10.1007/s100520000427
Eur. Phys. J. C 16, 169–180 (2000) THE EUROPEAN

PHYSICAL JOURNAL C
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Abstract. As an example of a noncommutative space we discuss the quantum 3-dimensional Euclidean
space R

3
q together with its symmetry structure in great detail. The algebraic structure and the represen-

tation theory are clarified and discrete spectra for the coordinates are found. The q-deformed Legendre
functions play a special role. A completeness relation is derived for these functions.

1 Introduction

Noncommutative space-time structures are finding in-
creasing interest in gauge theories. Special examples [1]
have been discussed in the literature. Among them are
1) The canonical structure:

[x̂i, x̂j ] = iΘij , Θij ∈ C

2) the Lie-algebra structure:

[x̂i, x̂j ] = i cij
k x̂k, cij

k ∈ C

3) The quantum space structure:

[x̂i, x̂j ] = icij
klx̂

kx̂l, cij
kl ∈ C

We shall discuss a special example of the third case [2].
For a more general review of the quantum space structure
see [3].

In all of the above cases we consider the associative
algebra freely generated by the elements x̂i modulo the
respective relations. This algebra of formal power series
forms the algebra Ax.

Ax =
C[ [x̂1 . . . x̂N ] ]

R

For a physicist this means that he is free to use the rela-
tions to reorder the elements of an arbitary power series.
For the quantum space algebra we wish to exclude patho-
logical cases such as the trivial case where there is no
relation at all or where the product of any two elements is
zero modulo the relations. To exclude such cases we shall
demand the Poincaré-Birkhoff-Witt property for the al-
gebra. By this we mean that the dimension of the space
of homogeneous polynomials is the same as in the com-
mutative case. For the first and second examples this will

be the case, for the third example we require the Yang-
Baxter equation. To formulate it we write the relations in
the form:

x̂ix̂j = R̂ij
klx̂

kx̂l, R̂ij
kl ∈ C

and define N3 × N3 matrices

R̂ i1 i2 i3
12 j1 j2 j3

= R̂i1 i2
j1 j2

δi3
j3

R̂ i1 i2 i3
23 j1 j2 j3

= δi1
j1

R̂i2 i3
j2 j3

The Yang-Baxter equation is:

R̂12 R̂23 R̂12 = R̂23 R̂12 R̂23

There are several known solutions of this equation. We
are interested in such relations that allow a conjugation
which makes the algebra a ∗-algebra. This is because we
have to associate the observables like the coordinates with
selfadjoint operators in a Hilbertspace. The R̂-matrices for
the quantum groups SOq(n) allow such conjugations.

The quantum space algebra is a comodule of a quan-
tum group. We start from co-algebra relations

∆(xi) = T i
k ⊗ x̂k

and compute

∆(xi)∆(xj) = T i
kT j

l ⊗ x̂kx̂l

= T i
kT j

l ⊗ R̂kl
mnx̂mx̂n

If we demand RTT relations

T i
kT j

l R̂
kl
mn = R̂ij

klT
k
mT l

n

for the T -algebra, we find

∆(xi)∆(xj) = R̂ij
kl∆(xk)∆(xj)

There is always a solution to the RTT relations given by

T i
j = δi

j .
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If this is the only solution then the bialgebra consists of
the unit element only; not very interesting. If the R̂-matrix
leads to the quantum group SOq(n), we have a more in-
teresting case. Instead of introducing the quantum group
SOq(n) we shall deal with the corresponding q-Lie alge-
bra soq(n). The quantum space is then a module of this
algebra.

In this paper we discuss the 3-dimensional case in great
detail. The algebra is introduced in Chapter 2. It has a pe-
culiar property, there is a homomorphism of the algebra
soq(3) into the algebra R

3
q. This is discussed in Chapter

3. The full algebra can then be generated by a central
element, the radius R, and elements of the tensor prod-
uct of an suq(2) algebra and an suq(1, 1) algebra. The
generators of the suq(2) algebra are further restricted by
relations that when the algebra is represented lead to a
unique infinite-dimensional representation of suq(2). We
call this algebra the t-algebra. The suq(1, 1) algebra we
call K-algebra. If we then demand that the soq(3) algebra
corresponds to orbital angular momentum the K algebra
is restricted in the same sense as the t-algebra. This is dis-
cussed in Chapter 4. This clarifies the algebraic structure
of the soq(3) module R

3
q.

To discuss physics we need representations of the al-
gebra. The observables should be represented by (essen-
tially) self-adjoint linear operators in a Hilbert space. This
way we can use the well developped formalism of quan-
tum mechanics and its interpretation scheme. In Chapter
5 we discuss the representations of the algebra. We find
that they are characterized by one real parameter z0. In
all these representations we obtain a discrete spectrum
for the coordinate X3, which along with R and T 3

orb, the
third component of the orbital angular momentum, form
a complete commuting set of observables. The scale of the
spacing of the eigenvalues of X3 is determined by the con-
stant z0, the eigenvalues are exponentially spaced. This we
call a q-lattice. We are not surprised that noncommuting
variables lead to a discretization (latticization) of space
[4].

In Chapter 6 we construct the transformation that
leads to a basis where Torb

2 is diagonal. The correspond-
ing transformation function turn out to be the q-deformed
associated Legendre functions. They are defined in Ap-
pendix D in terms of the big q-Jacobi polynomials. They
satisfy a difference equation, a recursion equation and
have orthogonaltity properties - in complete analogy to
the usual associated Legendre functions. From the self-
adjointness property of X3 we derive a completeness re-
lation as well, this is done in Appendix E. Appendices A,
B and C are devoted to the representation of the suq(2)
and suq(1, 1) algebras and their comultiplication.

2 The algebra
of the euclidean quantum space R

3
q

This algebra has been discussed in [5], we use the same
notation here:

R
3
q:

X3X+ − q2X+X3 = 0
X3X− − q−2X−X3 = 0 (2.1)

X−X+ − X+X− = λX3X3, λ = q − q−1, q ∈ R.

We shall assume q > 1 in this paper. This non-commuta-
tive structure is our model for a non-commutative space.
We can impose conjugation properties that are compatible
with the relations (2.1) justifying the ‘R’ in R

3
q:

X+ = −qX−, X3 = X3. (2.2)

The quantum space R
3
q has a co-module structure un-

der the action of the quantum group SOq(3) [3] and a
module structure under the corresponding q-Lie algebra.
suq(2):

q−1T+T − − qT −T+ = T 3

q2T 3T+ − q−2T+T 3 = (q + q−1)T+ (2.3)
q2T −T 3 − q−2T 3T − = (q + q−1)T −

The conjugation properties justifying the ‘u’ in suq(2) are:

T+ =
1
q2 T −, T 3 = T 3. (2.4)

The module structure that was found in [5] is:

T 3X3 = X3T 3

T 3X+ = q−4X+T 3 + q−1(1 + q−2)X+ (2.5)
T 3X− = q4X−T 3 − q(1 + q2)X−

T+X3 = X3T+ + q−2
√
1 + q2X+

T+X+ = q−2X+T+ (2.6)

T+X− = q2X−T+ + q−1
√
1 + q2X3

T −X3 = X3T − + q
√
1 + q2X−

T −X+ = q−2X+T − +
√
1 + q2X3 (2.7)

T −X− = q2X−T −

In the limit q = 1 we obtain from relations (2.1)–(2.7) the
commutative R

3 with the Lie algebra so(3) acting on it.
As a consequence of the above relations it follows that

there is a central hermitean element, the q-deformed ra-
dius:

R2 = X3X3 − qX+X− − 1
q

X−X+

= q2X3X3 + (1 + q−2)X+X+, (2.8)

R2 = R2.

‘Central’ means that R2 commutes with all the elements
X and T .

There is a well-known Casimir operator for the suq(2)
algebra:

T2 =
q2

λ2 τ
1
2 +

1
λ2 τ− 1

2 + τ− 1
2 T+T − − 1 + q2

λ2 . (2.9)
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We have introduced the group-like element

τ = 1 − λT 3 (2.10)

and the elements τ
1
2 and τ− 1

2 as an extension of the al-
gebra. We shall extend the algebra by the element R =
(R2)

1
2 and R−1 = (R2)−

1
2 as well.

The τX and τT commutation relations can be ob-
tained from the T 3X and T 3T relations and vice versa.
They are

τX3 = X3τ

τX+ = q−4X+τ (2.11)
τX− = q4X−τ

and

τT 3 = T 3τ

τT+ = q−4T+τ (2.12)
τT − = q4T −τ.

The definition of the orbital angular momentum as it
was given in [5] can be best formulated in terms of the
elements

L+ =
1

q2
√
1 + q2

τ− 1
2 T+

L− = − 1

q3
√
1 + q2

τ− 1
2 T − (2.13)

L3 =
1

q2(1 − q2)

(
τ− 1

2 − 1 − λ2

1 + q2 T2
)

As the q-generalization of the fact that orbital angular mo-
mentum is orthogonal to the coordinate vector we impose
the constraint

L ◦ X = L3X3 − qL+X− − 1
q

L−X+ = 0. (2.14)

We shall see that this defines orbital angular momentum
uniquely.

3 The t algebra

The algebra introduced in the previous chapter allows a
homomorphism of the T algebra into the X algebra. This
was first seen in [6]. We find this homomorphism by inter-
preting (2.5), (2.6) and (2.7) as inhomogeneous equations
which can be solved for T in terms of X. We first construct
a particular solution t and exhibit the homomorphism

T+ �→ t+ = − 1
λq3

√
1 + q2X+(X3)−1

T − �→ t− =
q2

λ

√
1 + q2X−(X3)−1 (3.1)

T 3 �→ t3 =
1
λ

(
1 + R2(X3)−2) .

Here we extend the algebra by the inverse of X3. To es-
tablish the homomorphism we have to use (2.1) to show
that the t elements satisfy (2.3). Furthermore the relations
(2.5) to (2.7) are fullfilled by the t elements. It is due to
(2.2) that they satisfy (2.4) as well.

There are additional relations for the t elements that
follow from (2.1). They are

τt = 1 − λt3 = −R2(X3)−2 (3.2)

and

t+t− = − 1
λ2

(
1 + q2τt

)
(3.3)

t−t+ = − 1
λ2

(
1 +

1
q2 τt

)
.

It follows that the Casimir operator for the t algebra takes
a definite value and that in the notation of Appendix A,
where mt and dt are defined,

T2 = −1 + q2

λ2 , mt = 0, dt = −q2

λ
. (3.4)

This value of the Casimir operator and the sign of τt,
which is negative, show that the t algebra cannot be rep-
resented by the well-known finite dimensional representa-
tions of the T algebra [3]. In Appendix A we shall show
that there are infinite-dimensional representations of the
T algebra among which there is one satisfying (3.2), (3.3)
and (3.4). The representation is uniquely determined by
these conditions, we present it here:

t3 |mt〉 = 1
λ

(
1 + q2q−4mt

) |mt〉

t+ |mt〉 = 1
λq

√
q−4mt − 1 |mt + 1〉 (3.5)

t− |mt〉 = q

λ

√
q−4(mt−1) − 1 |mt − 1〉

mt ≤ 0.

From (3.5) it follows that

t+ |0〉 = 0. (3.6)

There is no state with positive mt.
Equations (3.1) allow us to express the elements XR−1

in terms of the t elements:

X3R−1 = ±(−τt)−
1
2

X+R−1 = ∓ λq3√
1 + q2

t+(−τt)−
1
2 (3.7)

X−R−1 = ± λ

q2
√
1 + q2

t−(−τt)−
1
2

The two different signs are the signs of X3R−1 =√
(X3)2R−2. These elements can be viewed as homoge-

neous coordinates in the R
3
q space.
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The representations of these elements are now obtained
from (3.5):

X3R−1 |mt〉 = ±q2mt−1 |mt〉
X+R−1 |mt〉 = ∓ q√

1 + q2

√
1 − q4mt |mt + 1〉 (3.8)

X−R−1 |mt〉 = ± 1√
1 + q2

√
1 − q4(mt−1) |mt − 1〉

The different signs in (3.8) lead to inequivalent irreducible
representations of the X algebra.

4 The K algebra

We continue to consider the (2.5), (2.6) and (2.7) as in-
homogeneous equations that should be solved for the T ’s.
We have found one particular solution (3.1) and now move
to the homogeneous part. This we do by the Ansatz:

T ± = ∆± + t± (4.1)
T 3 = ∆3 + t3

(2.5), (2.6) and (2.7) become homogeneous equations for
the ∆’s.

X±∆+ = q±2∆+X± (4.2)
X3∆+ = ∆+X3

X±∆− = q±2∆−X± (4.3)
X3∆− = ∆−X3

X±∆3 = q±4∆3X± (4.4)
X3∆3 = ∆3X3

These equations suggest the further Ansatz:

K± = ±(−τt)−
1
2 ∆±, (4.5)

K3 = (τt)−1∆3.

The element τt satisfies the relation (2.11) and as a conse-
quence all the Ks commute with all the Xs and therefore
with all the t’s as well

KAXB = XBKA (4.6)

KAtB = tBKA

Now we turn to (2.3) and compute the KK relations:

q−1K+K− − qK−K+ = K3

q2K3K+ − q−2K+K3 = (q + q−1)K+ (4.7)
−q−2K3K− + q2K−K3 = (q + q−1)K−

This is exactly the same algebra as (2.3). Any realization
of the K-algebra will lead to a realization of the T -algebra:

T ± = t± ± (−τt)
1
2 K± (4.8)

T 3 = t3 + τtK
3

This is a relation which is familiar from the comultiplica-
tion of two representations of the algebra (2.3):

∆β(T 3) = T 3 ⊗ 1 + τ ⊗ T 3 (4.9)

∆β(T ±) = T ± ⊗ 1 ± √−τ ⊗ T ±

This comultiplication will be discussed in Appendix
C. It is adjusted to representations where the first fac-
tor has negative eigenvalues of τ . We emphasize that the
representations of the t algebra in (4.8) are restricted by
the relations (3.3) whereas for the K algebra any repre-
sentation would do as long as we are not considering any
conjugation properties.

If we now demand the conjugation property (2.4) for
the T algebra we find for the K algebra:

K3 = K3, K+ = − 1
q2 K−. (4.10)

Note the sign. The K algebra belongs to the SUq(1, 1)
quantum group.

If we now use the condition (2.14) for orbital angular
momentum we will specify the K algebra representation
uniquely as well. It needs some computation to express
the L algebra (2.13) in terms of the t and K algebras.

L+ =
1

q2
√
1 + q2

{
(−τt)−

1
2 t+ ⊗ (−τk)−

1
2

+1 ⊗ (−τk)−
1
2 K+

}
L− = − 1

q3
√
1 + q2

{
(−τt)−

1
2 t− ⊗ (−τk)−

1
2

−1 ⊗ (−τk)−
1
2 K−

}
(4.11)

L3 =
q2 − 1

q4(q2 + 1)

{
q2

λ2 (−τt)
1
2 ⊗ (−τk)

1
2

+(−τt)
1
2 ⊗ (−τk)−

1
2

(
−K+K− +

q2

λ2

)
−1 + q2

λ2 (−τt)−
1
2 ⊗ (−τk)−

1
2 + t− ⊗ (−τk)−

1
2 K+

−q2t+ ⊗ (−τk)−
1
2 K−

}
This already shows that we should restrict the represen-
tations such that τk has negative eigenvalues. There is an
additional reason for it. We shall see in Appendix C that
the coproduct (4.8) only leads to representations with pos-
itive eigenvalues of τ if τk has negative eigenvalues. Only
in this case the representations of T can be decomposed
into finite-dimensional ones. We are here adding this as
an additional assumption - not knowing if it is really nec-
essary.

With this assumption it will follow from the comulti-
plication rule of Appendix C that we have to choose

dk = − 1
λq2 . (4.12)

Now we are ready to evaluate (2.14). This relation will be
true if and only if:

mk = −1. (4.13)
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This is in the notation of Appendix B. For the Casimir
operator we find

T2
k = −1 + q2

λ2 . (4.14)

This uniquely determines the K algebra representation.
The generators of the orbital angular momentum will be
denoted by Torb.

We find the result:

T 3
orb = t3 ⊗ 1 + τt ⊗ K3 (4.15)

T ±
orb = t± ⊗ 1 ± √−τt ⊗ K±

where the t and K representations are determined by (3.4)
and (4.12), (4.13).

We can add spin to orbital angular momentum:

T 3 = T 3
orb ⊗ 1 + τorb ⊗ S3 (4.16)

T ± = T ±
orb ⊗ 1 +

√
τorb ⊗ S±

The spin operators S can be in any finite-dimensional rep-
resentations of the T algebra.

5 Representations of the Torb algebra

The representation of the K algebra that enters orbital
angular momentum is characterized by (4.12), (4.13) and
(4.14):

dk = − 1
λq2 , mk = −1, T2

k = −1 + q2

λ2 . (5.1)

It is an infinite-dimensional representation with mk rang-
ing from 0 to ∞.

K3 |mk〉 = 1
λ

(
1 +

1
q2 q−4mk

)
|mk〉

K+ |mk〉 = 1
qλ

√
1 − q−4(mk+1) |mk + 1〉 (5.2)

K− |mk〉 = − q

λ

√
1 − q−4mk |mk − 1〉

K− |0〉 = 0, mk ≥ 0

The representation Torb of orbital angular momentum
is the tensor product of this representation and the t rep-
resentation given in (3.5). The eigenstates of T 3

orb are char-
acterized by the two numbers mt and mk.

T 3
orb |mt, mk〉 = 1

λ

(
1 − q−4(mt+mk)

)
|mt, mk〉 (5.3)

T+
orb |mt, mk〉 = 1

λq

√
q−4mt − 1 |mt + 1, mk〉

+
1
λ

q−2mt

√
1 − q−4(mk+1) |mt, mk + 1〉

T −
orb |mt, mk〉 = q

λ

√
q−4(mt−1) − 1 |mt − 1, mk〉

+
q2

λ
q−2mt

√
1 − q−4mk |mt, mk − 1〉

In this representation K2 and t2 are diagonal. The trans-
formation to the basis where T2

orb is diagonal will be con-
structed in the next chapter. The value of T 3

orb in (5.3)
shows that we have found finite-dimensional representa-
tions of Torb.

We obtain from (5.3)

τorb |mt, mk〉 = q−4(mt+mk) |mt, mk〉. (5.4)

The representation of the X algebra can be obtained
from (3.8). The element R is central, it will be diagonal
in the mt, mk basis. We denote the eigenvalue of R2 by

R2 |mt, mk, M〉 = q4M+2z2
0 |mt, mk, M〉, (5.5)

where z0 is an arbitrary parameter characterizing the ra-
dius. Then we obtain from (3.8) the representation of X3:

X3 |mt, mk, M〉 = q2(mt+M)z0 |mt, mk, M〉. (5.6)

We have absorbed the sign in (3.8) yielding inequivalent
representations in the sign of z0 which is not determined
by (5.5).

This and (5.4) suggest that we should introduce a no-
tation characterizing the eigenvalue of X3 by a quantum
number as well as the eigenvalue of T 3

orb.

ν = mt + M, m = mt + mk (5.7)

In this notation we obtain the representation which was
also found in [7]:

X3 |M, ν, m〉 = q2νz0 |M, ν, m〉
R2 |M, ν, m〉 = q4M+2z2

0 |M, ν, m〉
T 3

orb |M, ν, m〉 = 1
λ

(
1 − q−4m

) |M, ν, m〉
X+ |M, ν, m〉 = (5.8)

− q2z0√
1 + q2

√
q4M − q4ν |M, ν + 1, m + 1〉

X− |M, ν, m〉 =
qz0√
1 + q2

√
q4M − q4(ν−1) |M, ν − 1, m − 1〉

T+
orb |M, ν, m〉 =

1
q2 − 1

√
q4(M−ν) − 1 |M, ν + 1, m + 1〉

+
1
λ

√
q4(M−ν) − q−4(m+1) |M, ν, m + 1〉

T −
orb |M, ν, m〉 =

q2

q2 − 1

√
q4(M−ν+1) − 1 |M, ν − 1, m − 1〉

+
q2

λ

√
q4(M−ν) − q−4m |M, ν, m − 1〉

ν ≤ M, m ≥ ν − M

6 Reduction of the representation of Torb

The above representation (5.3) of Torb is a tensor prod-
uct of two representations, with t2 and K2 diagonal. We
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proceed with its decomposition into a sum of irreducible
representations characterized by the eigenvalues of Torb

2.
From the Appendix A we know that for d = λdtdk = λ−1

the eigenvalues of T2 are q[l][l + 1]. Therefore we start
with an Ansatz of the form

|l, m〉 =
∑

mk,mt

cmk,mt

l,m |mt, mk〉, mk ≥ 0, mt ≤ 0

T2
orb |l, m〉 = q[l][l + 1] |l, m〉. (6.1)

According to (5.7) m = mt + mk, so that we have

cmk,mt

l,m = cmt

l,mδm,mt+mk
. (6.2)

From the definition (2.9) of T2 and the Equations (5.3)
we obtain a recursion relation for the coefficients cmt

l,m.(
q2l+2 + q−2l − (q2 + 1)q2(m+1)−4mt

)
cmt

l,m =

q2m+1
(√

(q−4mt − 1)(q−4mt − q−4m)cmt+1
l,m (6.3)

+
√
(q4−4mt − 1)(q4−4mt − q−4m)cmt−1

l,m

)
A comparison with the q-difference Equation (D.18) for
the functions P̃ l

m defined in (D.8) and (D.16) shows that
(6.3) is solved by

cmt

l,m =


√
1 − q−2

qm+1−mt
P̃ m

l (±q2(mt−1)−2m) form ≥ 0√
1 − q−2

q1−mt
P̃

|m|
l (±q2(mt−1)) form < 0

(6.4)

Note that P m
l is defined for m ≥ 0 only.

The orthogonality condition (D.19) for the functions
P̃ m

l suggests to start with the direct sum of two repre-
sentations of the form (5.3), such that both signs of the
argument of P̃ m

l appear.

|l, m〉 =
∑

σ=±1

∑
mt

cmt,σ
l,m |mt, mk, σ〉 (6.5)

cmt,σ
l,m =

{√
1 − q−2qmt−1−mP̃ m

l (σq2(mt−m−1) form ≥ 0√
1 − q−2qmt−1P̃

|m|
l (σq2(mt−1)) form < 0

(6.6)
We know that mk ≥ 0, mt ≤ 0 and m = mt + mk,

thus mt is restricted by mt ≤ 0 and m ≥ mt. The last
condition comes into effect for negative values of m. Note
that if mt takes its largest allowed value, the coefficient of
cmt+1
l,m in (6.3) vanishes. We are free to choose this c to be
zero. For m ≥ 0 it then follows from (6.3) that cmt

l,m = 0
for mt > 0 and for m < 0 the same is true for mt > m.

The values of l are restricted by the condition |m| ≤ l,
as seen from (D.9). This is obviously consistent with the
recursion formula (6.3).

We have chosen the normalization in (6.6) in such a
way that according to (D.19) the eigenfunctions of Torb

2

are orthonormal:

q−1λ
∑

σ=±1

min{0,m}∑
mt=−∞

q2(mt−1)−m−|m|P̃ |m|
l (σq2(mt−1)−m−|m|)

×P̃
|m|
l′ (σq2(mt−1)−m−|m|) = δl,l′

(6.7)
To see this for m < 0 it is enough to shift the summation
variable mt → mt + m.

We now assume that the two representations with σ =
+1 and σ = −1 also lead to a different sign of z0 in (5.6).

X3 |mt, mk, M, σ〉 = q2(mt+M)σ|z0| |mt, mk, M, σ〉 (6.8)

Then it follows from (E.7) that the functions P̃ m
l satisfy

the following completeness relation

q−1λ

∞∑
l=0

qmt+m′
t−2−m−|m|P̃ |m|

l (σq2(mt−1)−m−|m|)

×P̃
|m|
l (σ′q2(m′

t−1)−m−|m|) = δσ,σ′δmt,m′
t

(6.9)

This construction shows that for fixed m, Torb
2 is a self-

adjoint operator in the basis |mt, mk, σ〉, σ = ±1, and
that the transformation from the basis |mt, mk, σ〉 to the
basis |l, m〉 is an isometry.

Appendices

A Representations of the T algebra

When constructing representations of the T algebra, we
are aiming at representations where T 3 is selfadjoint (or
essentially selfadjoint). This allows us to assume T 3 to be
diagonal:

T 3 |m〉 = f(m) |m〉. (A.1)

The eigenvalue of T 3 is f(m), m is a labelling of the eigen-
states.

The second equation of (2.3) shows that T+ |m〉 is
again an eigenstate of T 3, we choose the labelling such
that this state is labelled by m + 1:

T+ |m〉 = cm |m + 1〉. (A.2)

The relation (2.3) leads to a recursion formula for f(m):

f(m + 1) =
1
q4 f(m) +

1
q2 (q + q−1). (A.3)

This recursion formula has the solution

f(m) =
1
λ

− dq−4m. (A.4)

From T 3 = T 3 follows that dq−4m has to be real. We take
d and m to be real.

For the operator τ of (2.10) follows

τ |m〉 = λdq−4m |m〉. (A.5)

From the conjugation properties of T+ it follows that

T − |m〉 = q2c∗
m−1 |m − 1〉. (A.6)
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The third equation of (2.3) is the conjugate of the second
one. The first equation of (2.3) amounts to a recursion
formula for c∗

mcm

qc∗
m−1cm−1 − q3c∗

mcm = f(m). (A.7)

This recursion formula can be solved:

c∗
mcm =

1
λ

{
− 1

q2λ
+ αλq−2m − d

q4 q−4m

}
. (A.8)

The real parameter α is not determined by (A.7).
We see that c∗

mcm becomes negative for m → ∞. This
is not allowed. There has to be a largest value of m, say
m, such that

c∗
mcm = 0. (A.9)

Then it follows from (A.2) that T+ does not lead to a state
with a larger value than m. To analyze this situation we
introduce the function:

x = q−2m (A.10)

h(x) =
{

− 1
q(q2 − 1)

+ αλx − d

q4 x2
}

The function h(x) is negative for x = 0, the sign of h(x)
for x → ∞ depends on the sign of d. In any case h(x) has
to have a zero for positive x to represent c∗c. We have to
demand

x1 = q−2m, h(x1) = 0. (A.11)

The parameter α can now be expressed in terms of m.

α =
1
λ

{
1
λ

q2(m−1) + dq−2(m+2)
}

. (A.12)

If α takes this value h(x) has the two zeros:

x1 = q−2m, x2 =
1

λd
q2(m+1). (A.13)

We obtain for c∗c:

c∗
mcm = − d

λq4

(
q−2m − q−2m

)(
q−2m − 1

λd
q2(m+1)

)
.

(A.14)
The representation is characterized by two parameters, m
and d. We use this parameter in the explicit form of the
matrix elements:

T 3 |m〉 = (
1
λ

− dq−4m) |m〉
T+ |m〉 = (A.15)

1
q2

√
d

λ
(q−2m − q−2m)

(
1

λd
q2(m+1) − q−2m

)
|m + 1〉

T − |m〉 =
√

d

λ
(q−2(m−1) − q−2m)

×
√

1
λd

q2(m+1) − q−2(m−1) |m − 1〉
τ |m〉 = dλq−4m |m〉
T2 =

1
λ2

√
λd

(
q2(m+1) + λdq−2m

)
− 1 + q2

λ2

Let us now have a closer look at the condition c∗c ≥ 0.
For this purpose we discuss the three cases d > 0, d = 0
and d < 0 separately.

d > 0

There has to be a smallest value of m, say m, such that
|m〉 �= 0 and T − |m〉 = 0, therefore

c∗
m−1cm−1 = 0. (A.16)

From (A.14) follows for m ≥ 0

d =
1
λ

, m = −m. (A.17)

The number of states between m and m has to be
integer:

2m + 1 ≡ n. (A.18)
This shows that m has to be integer or half integer and

we found the 2l+1-dimensional representation (m = l) of
soq(3).

d = 0

In this case h(x) is a linear function:

h(x) = − 1
q(q2 − 1)

+ αλx. (A.19)

Now α has to be positive for h to have a zero for positive
x. From (A.12) follows

α =
1

q2λ2 q2m. (A.20)

The representation can be obtained from (A.15). The pa-
rameter m that characterizes the representation can take
any real value. The representation is infinite-dimensional,
however, τ is not invertible.

d < 0

This is the situation that arises for the t algebra, as can
be seen from (3.2). In this case x2 is negative. We only
have a largest value of m. The representation is infinite-
dimensional and m is not restricted. The matrix elements
are obtained from (A.15). We write them such as to exhibit
the positive square roots:

T 3 |m〉 = (
1
λ

− dq−4m) |m〉
T+ |m〉 = (A.21)

1
q2

√
−d

λ

√
(q−2m − q−2m)

(
q−2m − 1

λd
q2(m+1)

)
|m + 1〉

T − |m〉 =
√

−d

λ

√
(q−2(m−1) − q−2m)

×
√

q−2(m−1) − 1
λd

q2(m+1) |m − 1〉
τ |m〉 = dλq−4m |m〉



176 B.L. Cerchiai et al.: Structure of the three-dimensional quantum euclidean space

τ has negative eigenvalues only, thus τ
1
2 and T2 will not

be real.

B Representations of the K algebra

The algebraic relations of the K algebra are the same as
the relations of the T algebra, they are different only as a
∗ algebra:

K3 = K3, K+ = − 1
q2 K− (B.1)

T 3 = T 3, T+ =
1
q2 T −

This makes the K algebra a suq(1, 1) algebra.
All the results that depend only on the algebraic rela-

tions are the same as for the T algebra.

(A.1) : K3 |m〉= φ(m) |m〉 (B.2)
(A.2) : K+ |m〉= γm |m〉 (B.3)

(A.4) : φ(m) =
1
λ

− dkq−4m (B.4)

We again take dk and m real.

(A.5) : τk |m〉 = λdkq−4m |m〉 (B.5)

For K− there is a change in sign due to (B.1):

!(A.6) : K− |m〉 = −q2γ∗
m−1 |m − 1〉 (B.6)

!(A.8) : γ∗
mγm = − 1

λ

{
− 1

q2λ
+ αλq−2m − dk

q4 q−4m

}
(B.7)

Now γ∗
mγm becomes positive for m → ∞, we do not have

to cut off the spectrum at a largest value of m. We shall
see that all the representations are infinite-dimensional.

We introduce the function κ(x) analogous to h(x) in
(A.10):

κ(x) =
{

1
q2λ2 − αx +

dk

λq4 x2
}

, x = q−2m. (B.8)

The representations of the K algebra are:

K3 |m〉 = (
1
λ

− dkq−4m) |m〉
K+ |m〉 =

√
κ(q−2m) |m + 1〉 (B.9)

K− |m〉 = −q2
√

κ(q−2(m−1)) |m − 1〉

They are characterized by α and dk and restricted by the
condition κ(q−2m) ≥ 0. To discuss this condition we de-
termine the zeros of κ(x)

κ(x1,2) = 0 (B.10)

x1,2 =
λ

2dkq−4

{
α ±

√
α2 − 4dkq−6λ−3

}
We discuss the cases dk > 0, dk = 0 and dk < 0 separately
and start with

dk > 0

In this case κ(x) has no positive zero for
α < 2q−3

√
dkλ−3 = α0. The range of m is not restricted,

it can be of the form m0 + n, n ∈ Z0. If α ≥ α0 we will
have two positive zeros and κ(x) can be written in the
form

κ(x) =
1

q2λ2x1x2
(x − q−2m)(x − q−2m). (B.11)

The values of the zeros x1, x2 determine the parameters
α and dk and therefore the representation.

dk =
q2

λ
q2(m+m) (B.12)

α =
1

q2λ2 (q
2m + q2m)

There are now two inequivalent representations. We find
that in one representation the allowed values of m are

m ≤ m, m = m, m − 1, m − 2, . . . (B.13)

For the other representation we find

m > m, m = m + 1, m + 2, . . . (B.14)

Now we consider

dk = 0

The function κ becomes linear. It is positive at x = 0 and,
depending on α, stays positive or becomes negative for
x → ∞. If α < 0 there is no restriction in the range of m,
m = m0 + n, n ∈ Z. If α > 0 there is a lowest eigenvalue
of m, we are at the situation of (B.14).

Finally we consider

dk < 0

In this case κ(x) is positive for x → 0 and negative for
x → ∞. There is one zero for x > 0. This can also be seen
from (B.10) because the square root will now be larger
than α. The relevant zero of κ(x) is:

x1 =
λ

2|dk|q−4

{
−α +

√
α2 + 4|dk|q−6λ−3

}
(B.15)

= q−2mk

Now all values of α are allowed. The range of m will be as
in (B.14).

For orbital angular momentum we encounter the rep-
resentation

dk = − 1
q2λ

, x1 = q2. (B.16)

This leads to α = 0 and

κ(q−2m) =
1

λ2q2

(
1 − q−4(m+1)

)
. (B.17)

The respective representation is shown in (5.2).
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C Comultiplication

The standard comultiplication rule for the algebra (2.3)
is:

∆(T 3) = T 3 ⊗ 1 + τ ⊗ T 3 (C.1)

∆(T ±) = T ± ⊗ 1 + τ
1
2 ⊗ T ±

As a consequence, τ is group-like:

∆(τ) = τ ⊗ τ. (C.2)

The algebra (2.3) is the same for the T algebra and the
K algebra, they are distinguished by their conjugation
properties (B.1).

As long as τ
1
2 is hermitean, (C.1) will respect the con-

jugation properties and we have a comultiplication within
the T algebra or the K algebra respectively. From (C.2)
follows that ∆(τ

1
2 ) will be hermitean if τ

1
2 is.

∆(τ
1
2 ) = τ

1
2 ⊗ τ

1
2 (C.3)

If τ
1
2 is not hermitean ∆(T ) will have no definite conju-

gation properties even if T has.
We now turn to the product of representations as it

follows from the comultiplication rule (C.1). If we have
two representations of the algebra (2.3) we obtain a new
one by the rule

∆(T 3) = T 3
1 ⊗ 1 + τ1 ⊗ T 3

2 (C.4)

∆(T ±) = T ±
1 ⊗ 1 + τ

1
2
1 ⊗ T ±

2

From the discussion above follows that we can multiply
two representations of the T algebra (K algebra) to obtain
a representation of the T algebra (K algebra) as long as

τ
1
2
1 is hermitean. From now on we shall drop the indices
1 and 2 again, first and second representations will be
defined by the position in the product (C.4).

That the τ
1
2 of the first representation is hermitean

means d1 > 0. We shall discuss this situation first.

d1 > 0

The product of two representations of the T algebra (K
algebra) will be a T algebra (K algebra). From (C.2) fol-
lows

d = λd1d2. (C.5)

If d2 is negative d will be negative as well.
For the T algebra d positive restricts d to be d =

1
λ . This characterizes the finite-dimensional representa-
tions. From (C.5) follows that the product of two finite-
dimensional representations is finite-dimensional as ex-
pected but also that the product of a finite-dimensional
representation (d1 = 1

λ ) with an infinite-dimensional rep-
resentation (d2 < 0) leads to d < 0 and cannot be reduced
to finite-dimensional representations.

For the K algebra all representations are infinite-dim-
ensional.

We now turn to the case that d1 is negative, τ
1
2
1 will

be anti-hermitean.

d1 < 0

In this case the product of two representations will in gen-
eral not have well-defined conjugation properties. We can,
however, start from a modified comultiplication rule:

∆β(T 3) = T 3 ⊗ 1 + τ ⊗ T 3 (C.6)

∆β(T ±) = T ± ⊗ 1 ± (−τ)
1
2 ⊗ T ±

If (−τ)
1
2 is hermitean this rule allows us to multiply a

representation of the T (K) algebra by a representation of
the K(T ) algebra to obtain a T (K) algebra.

T 3 ⊗ 1 + τ ⊗ K3 (C.7)

T ± ⊗ 1 ± (−τ)
1
2 ⊗ K±

will be a representation of the T algebra whereas

K3 ⊗ 1 + τk ⊗ T 3 (C.8)

K± ⊗ 1 ± (−τk)
1
2 ⊗ T ±

will be a representation of the K algebra.
For the comultiplication (C.6) τ will be group-like as

well and it follows again that

d = λd1d2. (C.9)

But now d1 is negative.
Of special interest is the case that d1 and d2 are both

negative, then d is positive. If we multiply T × K to ob-
tain a T algebra then we know that d = 1

λ and, as a
consequence

d1d2 =
1
λ2 (C.10)

to obtain a representation with well-defined conjugation
properties. This is exactly the case for the construction of
the Torb algebra in the main part of this paper.

D The big q-Jacobi polynomials

In this appendix we recall some basics about q-special
functions [8], [9], [10], in particular the big q-Jacobi poly-
nomials.

First, we introduce some useful notation. The expres-
sions

[a] =
qa − q−a

q − q−1
q→1→ a, [a]! =

a∏
k=1

[k]
q→1→ a! (D.1)

are known as symmetric q-numbers and symmetric q-fac-
torials respectively. The corresponding q-binomial coeffi-
cient is[

n

k

]
=


[n]!

[k]![n − k]!
forn ≥ k,

0 for n < k orn, k < 0.
(D.2)
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Of course

[
n

k

]
q→1→

(
n

k

)
. There are also “unsymmetric”

counterparts of these objects: the basic q-number

1 − qa

1 − q

q→1→ a (D.3)

and the q-shifted factorial (Pochammer-symbol)

(a; q)k =
k−1∏
n=0

(1 − aqn), (D.4)

(a1, a2, . . . , ai; q)k =
i∏

m=1

(am; q)k.

The Jackson integral of a function f(x) is defined for q > 1
by ∫ a

0
dq−1x f(x) = (1 − q−1)

∞∑
ν=0

aq−νf(aq−ν) (D.5)

With the help of the q-shifted factorials, the basic hyper-
geometric function can be introduced

rφs

(
a1, . . . , ar

b1, . . . , bs

∣∣∣∣∣ q−1;x

)
=

∞∑
k=0

(a1, . . . , ar; q−1)k
(b1, . . . , bs; q−1)k

×(−1)(1+s−r)kq− 1
2 (1+s−r)k(k−1) xk

(q−1; q−1)k
(D.6)

This series plays in the theory of q-special functions a
role analogous to that of the hypergeometric series in the
theory of usual special functions. We have considered a
base q−1 here, because in this way rφs is well-defined for
q > 1, which is the case we are interested in here.

The big q-Jacobi polynomials [8], [9] are constructed
in terms of the basic hypergeometric series as

Pl(x; a, b, c; q−1) = 3φ2

(
ql, abq−(l+1), x

aq−1, cq−1

∣∣∣∣∣ q−1; q−1

)
.

(D.7)
For the applications we consider in this paper, we are in-
terested in the case

P m
l (x) ≡ Pl−m(x; q−2m, q−2m, −q−2m; q−2) (D.8)

=
l−m∑
k=0

(−1)k
q−k(m+1)(x; q−2)k
(−q−2(m+1); q−2)k

[
l − m

k

][
l + m + k

k

]

×
[

m + k

k

]−1

, m ≥ 0

Notice that the P m
l are polynomials of the order l−m in x.

Due to the factor

[
l − m

k

]
, which vanishes for k > l − m

according to the definition (D.2). The sum in (D.6) actu-
ally becomes finite. Due to the same factor the polynomi-
als P m

l vanish, if the condition m ≤ l is not satisfied:

P m
l (x) = 0 forl < m. (D.9)

The further condition m ≥ 0 is necessary for the polyno-
mials P l

m to be well-defined, due to the factor
(q−2(m−1); q−2)k in the denominator of the basic hyper-
geometric function which otherwise vanishes for negative
m.

Some of the first big q-Jacobi polynomials are

P 0
0 (x) = 1, P 0

1 (x) = x,

P 0
2 (x) =

1
q[2]

([3]x2 − q−2), P 0
3 (x) =

x

q5[2]
([5]q2x2 − [3]),

P 1
1 (x) = 1, P 1

2 (x) = x,

P 1
3 (x) =

1
q5[4]

(q4[5]x2 − 1).

(D.10)
From [8] and [9] we learn that the polynomials P m

l (x)
satisfy a recurrence relation

xqm[2l + 1]P m
l (x) = (D.11)

ql[l + m + 1]P m
l+1(x) + q−l−1[l − m]P m

l−1(x)

a q-difference equation(
q−1−2m(q2l+1 + q−2l−1)x2 − q−4(m+1)(q2 + 1)

)
P m

l (x)

= q−2(2m+1)(x2 − 1)P m
l (xq−2 + (x2) (D.12)

−q−4(m+1))P m
l (xq2)

and the orthonormality condition∫ q−2(m+1)

−q−2(m+1)
dq−2x wm

l (x)wm
l′ (x)P

m
l (x)P m

l′ (x) = δl,l′ .

(D.13)
Here, the weight function wm

l is defined by

wm
l (x) ≡

√ (
q−4(m+1); q−4

)
∞(

q−4, q−4(m+1)−2; q−4
)
∞ (−q−2; q−2)∞

×q− 1
2 (l2+l+2lm−3m2+m+3)

√
(x2q4m; q−4)m

×
√

(q−2; q−2)l−m

(q−2(2m+1); q−2)l−m

√
[2m + 1]
2[2l + 1]

. (D.14)

Actually, as it is done e.g. in [9], the big q-Jacobi poly-
nomials can be alternatively defined as those polynomials
in x which are orthonormal with respect to the Jackson
integral with the weight function wm

l (x) in (D.14).
The weight function has the following scaling proper-

ties

wm
l (xq−2) = wm

l (x)

√
(1 − x2)

(1 − x2q4m)
, (D.15)

wm
l−1(x) = wm

l (x)ql

√
[l + m][2l + 1]
[l − m][2l − 1]

.

It is useful for the purposes of this paper to absorb the
weight function in the definition of the polynomials them-
selves and to introduce the further notation

P̃ m
l (x) = wm

l (x)P m
l (x). (D.16)
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With the help of (D.15) it turns out that (D.11) and (D.12)
become respectively

x qm+1P̃ m
l (x) =

√
[l − m + 1][l + m + 1]

[2l + 1][2l + 3]
P̃ m

l+1(x)

+

√
[l + m][l − m]
[2l + 1][2l − 1]

P̃ m
l−1(x) (D.17)

and(
(q2l+1 + q−2l−1)

x2

q
− (q2 + 1)q−2(m+2)

)
P̃ m

l (x) =

q−2(m+1)
√
(x2 − 1)(x2q4m − 1) P̃ m

l (xq−2) (D.18)

+
√
(x2 − q−4(m+1)+1)(x2 − q−4) P̃ m

l (xq2)

By using (D.13) and the definition of the Jackson integral
(D.5) we obtain the following orthonormality condition for
the functions P̃ m

l (x)

∑
σ=±1

0∑
n=−∞

q2(n−m−1)P̃ m
l (σq2(n−m−1))P̃ m

l′ (σq2(n−m−1))

= (1 − q−2)−1δl,l′ . (D.19)

Moreover, the functions P̃ m
l (x) have the property that

they transform under a parity transformation like

P̃ m
l (−x) = (−1)l−mP̃ m

l (x). (D.20)

In the particular case m = 0 the big q-Jacobi poly-
nomials become the big q-Legendre polynomials, which in
the limit q → 1 yield the usual Legendre polynomials. In
the same limit from the polynomials P m

l (x) we recover the
Jacobi polynomials with the normalization P m

l (1) = 1.

E Diagonalization of X3

In this appendix we study the transformation which is
inverse to the transformation (6.5), (6.6) constructed in
Sect. 5. We show how the big q-Jacobi polynomials can
be used to diagonalize X3 in the basis where Torb

2, T 3
orb,

R2 are diagonal.
The representation where Torb

2, T 3
orb, R2 are diagonal

can be found in [11], [12], [13]

T2
orb |M, l, m〉 = q[l][l + 1] |M, l, m〉

X3 |M, l, m〉 = r0q2M+m

×
{√

[l + m + 1][l − m + 1]
[2l + 1][2l + 3]

|M, l + 1, m〉

+

√
[l + m][l − m]
[2l + 1][2l − 1]

|M, l − 1, m〉
}

(E.1)

X+ |M, l, m〉 = r0q2M+m

×
{

q−l

√
[l + m + 1][l + m + 2]

[2][2l + 1][2l + 3]
|M, l + 1, m + 1〉

−ql+1

√
[l − m][l − m − 1]
[2][2l + 1][2l − 1]

|M, l − 1, m + 1〉
}

X− |M, l, m〉 = r0q2M+m

×
{

ql

√
[l − m + 1][l − m + 2]

[2][2l + 1][2l + 3]
|M, l + 1, m − 1〉

−q−l−1

√
[l + m][l + m − 1]
[2][2l + 1][2l − 1]

|M, l − 1, m − 1〉
}

where
0 ≤ l < ∞, −l ≤ m ≤ l. (E.2)

We make the following Ansatz for an eigenfunction of X3

X3
∑

M,l,m

dM,l,m|M, l, m〉 = z
∑

M,l,m

dM,l,m|M, l, m〉, (E.3)

with z the corresponding eigenvalue. By using (E.2) we
obtain a recursion relation for the coefficients dM,l,m

z dM,l,m = r0
q2M+m√
[2l + 1]

×
{√

[l − m + 1][l + m + 1]
[2l + 3]

dM,l+1,m (E.4)

+

√
[l + m][l − m]

[2l − 1]
dM,l−1,m

}
.

A comparison with the recursion relation (D.17) for the
functions P̃ m

l defined in (D.16) in terms of the Jacobi
polynomials shows that a solution of (E.4) is

dν,σ
M,l,m =


√
1 − q−2

qM+1+m−ν
P̃ m

l (σq2(ν−M−1−m)) form ≥ 0√
1 − q−2

qM+1−ν
P̃

|m|
l (σq2(ν−M−1)) form < 0

(E.5)
where z = σr0q−1+2ν , σ = ±1. By comparing with the
form of the eigenvalues of X3 (5.8) we see that we have to
restrict

ν, M ∈ Z, ν ≤ M, m ≥ ν − M. (E.6)

Notice that the argument of the functions would corre-
spond to x = cos θ = z

r classically, apart from the q-factor
q−(m+|m|) → 1 for q → 1.

X3 is a self-adjoint operator in this representation.
This was shown in [14].

Now, the set of eigenfunctions of a self-adjoint operator
is complete, therefore we expect a completeness relation
to hold for the eigenfunctions of X3. In fact, (D.19) can
be interpreted in this way. As the sum (D.19) contains
two sums, one where the argument of P l

m is positive and
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one where it is negative, we obtain a representation where
the eigenvalues of X3 can have both signs, so that we
automatically find the direct sum of two representations
of the type (5.8). The normalization of the coefficients
dM,l,m in (E.5) has been chosen in such a way as to yield
exactly (D.19).

As the eigenfunctions of a selfadjoint operator corre-
sponding to different eigenvalues are orthogonal, since the
normalization constant is already fixed by (D.19), we ar-
gue that the following relation holds

∞∑
l=0

qν+ν′−2P̃
|m|
l (σq2(ν−1))P̃ |m|

l (σ′q2(ν′−1))

= (1 − q−2)−1δν,ν′δσ,σ′ (E.7)

where σ, σ′ = ±1 are the signs of the argument of the
functions and ν ≤ min{m, 0}. This is an interesting result
for itself about the Jacobi polynomials.

References

1. A. Dimakis, J. Madore, Differential calculi and linear con-
nections, J. Math. Phys. 37, 4647 (1996); M. Dubois-
Violette, R. Kerner, J. Madore, Gauge bosons in a non-
commutative geometry, Phys. Lett. B 217, 485 (1989);
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